

G5-REGENMODULAR REGENERATIVE DC LOADS

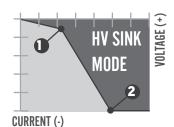
With the ability to sink DC power up to high voltage and currents, the G5-REGEN is ideal for testing energy storage devices. Modules are stackable to 6MW.

Each power dense module has an extensive feature set which includes programmable PID parameters and an inbuilt 8 channel recording scope. Adjustable power and resistance limits are provided. Optional remote control interfaces are available including high-speed CAN. Every G5-REGEN features an autoranging sink range, which allows for many more V/I combinations at nominal power. Modules can be fitted into flight cases or lab racks, with available options including isolation monitoring and emergency stops.

- + Programmable Ripple up to 10kHz
- + Two Current Ranges for Higher Accuracy
- Mixed Power Nominals in Master-Slave
- + Optional Battery Emulation Software
- + Ultra-Fast Dynamic Behaviour
- + Sink Voltages up to 3000V

CONTENTS

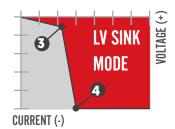
Selection Table/Modularity	2
Options/Form Factor	3
Operating Ranges & Features (18kW/27kW)	4-5
Operating Ranges & Features (36kW/54kW)	6-7
Highlighted Operating Ranges & Features	8
Autoranging/Operating Modes	9
Input	10
Interfaces & Control	11-13
Software/Soft Tools	14
Application Specific GUIs	15
Isolation/Mechanical	15
Safety & Protection	16
Common G5-REGEN Applications	17


STANDARD MODELS

SELECTION TABLE

Part Number	Maximum Power	Q4 Sink Voltage	Current Range	Internal Resistance Range
G5-REGEN 18-500-108	18kW	3 to 500Vdc*	0 to -108A	0 to $5000 m\Omega$
G5-REGEN 18-1000-54	18kW	5 to 1000Vdc*	0 to -54A	0 to 18000m Ω
G5-REGEN 27-500-162	27kW	3 to 500Vdc*	0 to -162A	0 to 3000mΩ
G5-REGEN 27-1500-54	27kW	8 to 1500Vdc*	0 to -54A	0 to 27000m Ω
G5-REGEN 36-500-216	36kW	3 to 500Vdc*	0 to -216A	0 to 2500m Ω
G5-REGEN 36-1000-108	36kW	5 to 1000Vdc*	0 to -108A	0 to 10000m Ω
G5-REGEN 54-500-324	54kW	3 to 500Vdc*	0 to -324A	0 to 1500m Ω
G5-REGEN 54-1000-162	54kW	5 to 1000Vdc*	0 to -162A	0 to $6000 m\Omega$
G5-REGEN 54-1500-108	54kW	8 to 1500Vdc*	0 to -108A	0 to 14000m Ω

^{*} The maximum current that can be taken derates as the voltage reduces beneath the lower level. Please see below for more details

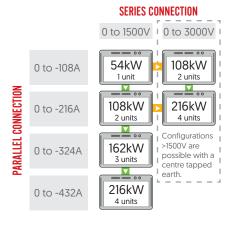

The maximum current that can be taken derates at low voltages. As standard the G5-REGEN operates in HV Sink Mode when operating as a DC load. In this mode the user can sink full current from $3\% V_{NOM}$ to $100\% V_{NOM}$, according to the maximum power. The HV Sink Mode operating range is indicated in dark grey.

Part Number	Point 1: 10% I _{MAX} (HV Mode)	Point 2: 100% I _{MAX} [HV Mode]
G5-REGEN 18-500-108	8V / 10.8A	15V / -108A
G5-REGEN 18-1000-54	15V / 5.4A	30V / 54A
G5-REGEN 27-500-162	8V / 16.2A	15V / -162A
G5-REGEN 27-1500-54	23V / 5.4A	45V / 54A

Part Number	Point 1: 10% I _{MAX} (HV Mode)	Point 2: 100% I _{MAX} (HV Mode)
G5-REGEN 36-500-216	8V / -21.6A	15V / -216A
G5-REGEN 36-1000-108	15V / -10.8A	30V / -108A
G5-REGEN 54-500-324	8V / -32.4A	15V / -324A
G5-REGEN 54-1000-162	15V / -16.2A	30V / -162A
G5-REGEN 54-1500-108	23V / -10.8A	45V / -108A

If you require to sink higher currents at lower voltages, then setting a maximum voltage between 10V to 166V switches the G5-REGEN to Low Voltage mode. The values possible at 100% I_{MAX} and 10% I_{MAX} are provided below. Lower voltages are possible with further current derating. The LV Sink Mode operating range is indicated in red.

Part Number	Point 3: 10% I _{MAX} (LV Mode)	Point 4: 100% I _{MAX} (LV Mode)
G5-REGEN 18-500-108	2V / 10.8A	3V / -108A
G5-REGEN 18-1000-54	2V / 5.4A	5V / 54A
G5-REGEN 27-500-162	2V / 16.2A	3V / -162A
G5-REGEN 27-1500-54	3V / 5.4A	8V / 54A


Point 3: 10% I _{MAX} (LV Mode)	Point 4: 100% I _{MAX} (LV Mode)
2V / -21.6A	3V / -216A
2V / -10.8A	5V / -108A
2V / -32.4A	3V / -324A
2V / -16.2A	5V / -162A
3V / -10.8A	8V / -108A
	(LV Mode) 2V / -21.6A 2V / -10.8A 2V / -32.4A 2V / -16.2A

MODULARITY (MASTER/SLAVE)

Up to 120 G5-REGEN modules can be arranged in series, parallel or matrix array configurations up to 6MW. Each module is able to operate independently, so that systems can be reconfigured, expanded or broken up as needs dictate. Inbuilt system comms allow users to switch between various set-ups. It is possible to connect models with different nominal powers in an asymmetric parallel or series configuration, as long as each module has the same nominal voltage. For example, an 18kW/500V/-108A and 54kW/500V/-324A module can be connected together to in parallel to create a 72kW/500V/-432A system.

The modular approach is useful for test houses and research labs who regularly test different sized power devices. The diagram shows all the possible combinations with four 54kW/1500V modules.

OPTIONS TABLE

OPTIONS

CODE	DESCRIPTION
	FORM FACTOR AND ENCLOSURES
/LR	Integration into a 19" lab rack
/FC	Integration into a flightcase
	INPUT
/FILTER	Front panel air filter and frame arrangement providing G3 filtration efficient for ≥10um particles
	INTERFACES AND CONTROL
/HMI	Lockable touchscreen HMI providing front panel control and measurement
/CANMP	Multi-protocol CAN interface with up to 100 user configurable messages
/ETHERCAT	EtherCAT interface
	SOFTWARE/SOFT TOOLS
/TFE	Integrated function generating engine for time based programming, including sweep function
/AAP	Integrated function generating engine with application area (parametric) programming
/BATSIM	GUI simulating battery characteristics with adjustable parameters
	SAFETY AND PROTECTION
/ISR	Integrated Safety Relay, e-stop interface for shutdown to EN ISO 13849-1:2015, Performance Level c
/PACOB	Protection against accidental contact of the AC terminal block
/RPP	Automatic voltage matching with reverse polarity protection
/XCD	AC safety discharge circuit discharging AC lines to <60V in <1s of AC power loss, required to meet EN 62477-1 for AC plug connections

FORM FACTOR AND ENCLOSURES

STANDARD FEATURES

TECHNICAL DATA				
Module Dimensions (Without Terminals)	19" × 672mm (W × D), a full cabinet integration service is available on request			
Module Height	4U (18kW models), 7U (27kW/36kW models), 10U (54kW models)			
Weight	50kg (18kW models), 77kg (27kW models), 87kg (36kW models), 121kg (54kW models)			
Basic Construction	IP 20 (up to IP 54 when mounted in a cabinet)			

Each G5-REGEN is built into a 19" rackmounting case as standard. Units can be treated to a laboratory rack or flight case integration. Common options include mains cables, passive indication of any residual DC voltage, isolation monitoring of DC cables and a panel mounted emergency stop. Switch panels with removable DC links can be fitted for modular systems. This simplifies the reconfiguration between series, parallel or independent use. Simple wheeled cabinets are also available.

Having a programmable power system mounted into a flight case on castors is often advantageous, especially when several departments or test cells share the same equipment. Multiple power systems can be fitted into the same flight case. Door hangers are fitted for convenience. Existing ETPS systems can also be retrospectively integrated into new flight cases where requested.

216kW CABINET INTEGRATION

OPERATING RANGES AND FEATURES (18kW/27kW MODELS)

STANDARD FEATURES				
	G5-REGEN 18-500-108	G5-REGEN 18-1000-54	G5-REGEN 27-500-162	G5-REGEN 27-1500-54
Remote Sense	Programmable (stability/drif	t: ≤0.01%FS¹ temperature coef	ficient: 0.007%FS/°C)	
Stability/Drift	Voltage: ≤0.01%FS¹ Current:	≤0.01%FS¹		
Temperature Coefficient	Voltage: 0.005%FS/°C² Curr	rent: 0.005%FS/°C2		
Efficiency	Up to 96%			
Rise/Fall Time 3 : Current Step [90% to 10% I $_{\rm MAX}$ at 33% V $_{\rm MAX}$] 10% to 90% of step/settling time	20μs/70μs			
Output Capacitance: X-capacitor LowCap	24µF	6μF	36µF	4μF
Output Capacitance: X-capacitor HighCap	444µF	111µF	666µF	74µF
Output Capacitance: Y-capacitor at DC	144nF	144nF	162nF	162nF
Ripple: Output Voltage Ripple (<1 MHz): Vrms, LowCap, Ohmic Load, 90% P _{MAX} 90% V _{MAX} , CV Mode	≤0.03% FS	≤0.05% FS	≤0.02% FS	≤0.03% FS
Ripple: Output Voltage Ripple [<1 MHz]: Vrms, HighCap, Ohmic Load, 90% P _{MAX} , 90% V _{MAX} , CV Mode	≤0.01% FS	≤0.02% FS	≤0.01% FS	≤0.02% FS
Ripple: Output Current Ripple [<1MHz]: Arms, LowCap, Ohmic Load, 90% P _{MAX} , 90% I _{MAX} , CC Mode	≤0.05% FS	≤0.05% FS	≤0.05% FS	≤0.03% FS
Noise: (20kHz to 20MHz) : Vpp, LowCap, Ohmic Load, 90% P _{MAX} , 90% V _{MAX} , CV Mode	≤0.02% FS	≤0.2% FS	≤0.15% FS	≤0.15% FS
Noise: (20kHz to 20MHz) : Vpp, HighCap, Ohmic Load, 90% P _{MAX} , 90% V _{MAX} , CV Mode	≤0.1% FS			

¹⁸h after 1h warm up time at constant line input, load and temperature. 2 At constant line and load conditions. 3 Current set-value step, constant voltage, LowCap mode.

⁴ At 25° ambient temperature, constant line/load conditions normal distribution (k=2).

OPERATING RANGES AND FEATURES (18kW/27kW MODELS)

STANDARD FEATURES					
	G5-REGEN 18-500-108	G5-REGEN 18-1000-54	G5-REGEN 27-500-162	G5-REGEN 27-1500-54	
HMI Touchpanel Meter Resolution	0.01V/0.01A		0.1V/0.01A		
Output Discharge to <60V	Active discharge enabled: < Active discharge disabled: <	1s :60s (500V models) <75s (1000	0V models) <90s (1500V mode	els)	
Static Accuracy ⁴ : Power at I _{MAX} 1kHz Filter	0.03% typ. FS				
Static Accuracy ⁴ : Voltage	0.01% typ. FS	0.01% typ. FS	0.01% typ. FS	0.016% typ. FS	
Static Accuracy ⁴ : Current Full Range 1kHz Filter	0.025% typ. FS				
Static Accuracy ⁴ : Current Low Range (-10% to 10% FS) 1kHz Filter	0.003% typ. FS				
Static Accuracy ⁴ : Resistance at I _{MAX} 1kHz Filter	0.03% FS	0.025% FS	0.03% FS	0.03% FS	
Pulsating Load: HighCap	30% $I_{\rm MAX}$ at 3kHz, 26% $I_{\rm MAX}$ at	≥5kHz (max. load ripple currer	nt sine, max. amplitude)		
Pulsating Load: LowCap	46% $I_{\rm MAX}$ at 3kHz, 17% $I_{\rm MAX}$ at	≥5kHz (max. load ripple curren	t sine, max. amplitude)		
Max. Ripple DC+ to PE / DC- to PE (Max. Allowed Ripple Vrms ≤1kHz: 1050 Vrms >1 kHz: [(1.26×10°)/f+5] Vrms)	≤IkHz: 1050Vrms 2kHz: 630Vrms 5kHz: 250Vrms 10kHz: 130Vrms 20kHz: 65Vrms 50kHz: 30Vrms 80kHz: 20Vrms				
Small Signal Modulation [Voltage Controller LowCap Mode]	Frequency (CV, CC): 0 to 10kHz Max. output voltage RMS sine at 10kHz: 0 to 5% FS Attenuation at 5kHz/10kHz, operating point: 90% V _{NOM} +5% V _{NOM} amplitude: 0.4dB/-6dB Phase lag analogue input to voltage out: 130µs				
Small Signal Modulation (Current Controller LowCap Mode)	Max. output amplitude curre Attenuation at 5kHz/10kHz o Phase lag analogue input to	perating point: 90% I _{NOM} + 5%	N _{OM} amplitude: -1.8dB/-3.8dB		
Sense Input Impedance While Operational	632kΩ	1212kΩ	632kΩ	1812kΩ	
Sense Input Impedance - Voltage OFF (RPP Closed if Option Chosen)	632kΩ	1212kΩ	632kΩ	1812kΩ	
Sense Input Impedance - Voltage OFF (Output Measurement Disconnected)	>10MΩ				
Ballast Resistor DC Power Port at Voltage OFF (no /RPP Option or RPP Closed)	37kΩ	140kΩ	25kΩ	210kΩ	
Ballast Resistor DC Power Port at Voltage OFF [With Option /RPP, Output Measurement Disconnected and Voltage OFF Deactivated]	632kΩ	1212kΩ	632kΩ	1812kΩ	
Ballast Resistor DC Power Port at Voltage OFF (With Option /RPP, Output Measurement Disconnected and Voltage OFF Activated)	>10MΩ				

 $^{^{\}rm 4}$ At 25° ambient temperature, constant line/load conditions normal distribution (k=2).

OPERATING RANGES AND FEATURES (36kW/54kW MODELS)

STANDARD FEATURES G5-REGEN 54-1500-108 G5-REGEN G5-REGEN Remote Sense Programmable (stability/drift: ≤0.01%FS¹ | temperature coefficient: 0.007%FS/°C) Stability/Drift Voltage: ≤0.01%FS1 | Current: ≤0.01%FS1 Temperature Coefficient Voltage: 0.005%FS/°C2 | Current: 0.005%FS/°C2 Efficiency Up to 96% Rise/Fall Time³: Current Step [90% to 10% $I_{\rm MAX}$ at 33% $V_{\rm MAX}$] 10% to 90% of step/settling time 20μs/70μs Output Capacitance: X-capacitor LowCap 48µF 12µF 72µF 18µF 8μΓ 222µF 1332µF 148µF Output Capacitance: X-capacitor HighCap 888µF 333uF Output Capacitance: Y-capacitor at DC 181nF 181nF 219nF 219nF 219nF Ripple: Output Voltage Ripple (<1 MHz): Vrms, LowCap, Ohmic Load, 90% P_{MAX} 90% ≤0.03% FS ≤0.03% FS ≤0.02% FS ≤0.03% FS ≤0.03% FS Ripple: Output Voltage Ripple (<1 MHz): Vrms, HighCap, Ohmic Load, 90% P_{MAX}, 90% ≤0.02% FS V_{MAX}, CV Mode Ripple: Output Current Ripple (<1MHz): Arms, LowCap, Ohmic Load, 90% P_{MAX}, 90% I_{MAX}, ≤0.05% FS Noise: (20kHz to 20MHz): Vpp, LowCap, ≤0.15% FS Ohmic Load, 90% $P_{\rm MAX}$, 90% $V_{\rm MAX}$, CV Mode Noise: (20kHz to 20MHz): Vpp, HighCap, ≤0.1% FS Ohmic Load, 90% $P_{\text{MAX'}}$ 90% $V_{\text{MAX'}}$ CV Mode

¹8h after 1h warm up time at constant line input, load and temperature. ² At constant line and load conditions. ³ Current set-value step, constant voltage, LowCap mode.

⁴ At 25° ambient temperature, constant line/load conditions normal distribution (k=2).

OPERATING RANGES AND FEATURES (36kW/54kW MODELS)

OTANDARD I EXTORES					
	G5-REGEN 36-500-216	G5-REGEN 36-1000-108	G5-REGEN 54-500-324	G5-REGEN 54-1000-162	G5-REGEN 54-1500-108
HMI Touchpanel Meter Resolution	0.01V/0.01A	0.1V/0.01A	0.01V/0.01A	0.1V/0.01A	0.1V/0.01A
Output Discharge to <60V	Active discharge enak Active discharge disak	oled: <1s oled: <60s (500V models] <75s (1000V models)	<90s (1500V models)	
Static Accuracy ⁴ : Power at I _{MAX} 1kHz Filter	0.03% typ. FS				
Static Accuracy ⁴ : Voltage	0.01% typ. FS	0.01% typ. FS	0.01% typ. FS	0.01% typ. FS	0.016% typ. FS
Static Accuracy ⁴ : Current Full Range 1kHz Filter	0.03% typ. FS	0.025% typ. FS	0.03% typ. FS	0.025% typ. FS	0.025% typ. FS
Static Accuracy ⁴ : Current Low Range (-10% to 10% FS) 1kHz Filter	0.003% typ. FS				
Static Accuracy ⁴ : Resistance at I _{MAX} 1kHz Filter	0.03% FS				
Pulsating Load: HighCap	30% I _{MAX} at 3kHz, 26%	I _{MAX} at ≥5kHz (max. load	ripple current sine, max.	amplitude)	
Pulsating Load: LowCap	46% I _{MAX} at 3kHz, 17% I	_{MAX} at ≥5kHz (max. load r	ipple current sine, max. a	amplitude)	
Max. Ripple DC+ to PE / DC- to PE [Max. Allowed Ripple Vrms ≤1kHz: 1050 Vrms >1 kHz: [[1.26×10 ⁶]/f+5] Vrms]	≤lkHz: 1050Vrms 2kHz: 630Vrms 5kHz: 250Vrms 10kHz: 130Vrms 20kHz: 65Vrms 50kHz: 30Vrms 80kHz: 30Vrms				
Small Signal Modulation [Voltage Controller LowCap Mode]	Frequency (CV, CC): 0 to 10kHz Max. output voltage RMS sine at 10kHz: 0 to 5% FS Attenuation at 5kHz/10kHz, operating point: 90% V _{NOM} +5% V _{NOM} amplitude: 0.4dB/-6dB Phase lag analogue input to voltage out: 130µs				
Small Signal Modulation [Current Controller LowCap Mode]	Attenuation at 5kHz/10	e current at 10kHz: 0 to 5 0kHz operating point: 90 put to current out: 110µs		de: -1.8dB/-3.8dB	
Sense Input Impedance While Operational	632kΩ	1212kΩ	632kΩ	1212kΩ	1812kΩ
Sense Input Impedance - Voltage OFF [RPP Closed if Option Chosen]	632kΩ	1212kΩ	632kΩ	1212kΩ	1812kΩ
Sense Input Impedance - Voltage OFF (Output Measurement Disconnected)	>10MΩ				
Ballast Resistor DC Power Port at Voltage OFF (no /RPP Option or RPP Closed)	19kΩ	74kΩ	13kΩ	51kΩ	112kΩ
Ballast Resistor DC Power Port at Voltage OFF [With Option /RPP, Output Measurement Disconnected and Voltage OFF Deactivated]	632kΩ	1212kΩ	632kΩ	1212kΩ	1812kΩ
Ballast Resistor DC Power Port at Voltage OFF (With Option /RPP, Output Measurement Disconnected and Voltage OFF Activated)	>10MΩ				

⁴ At 25° ambient temperature, constant line/load conditions normal distribution (k=2).

OPERATING RANGES AND FEATURES


HIGHLIGHTED FEATURES

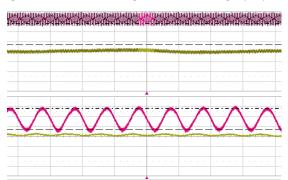
Sense plus terminals are built into the G5-REGEN for the connection of sense wire which compensates for voltage drops in the load lines. This has a number of advantages over traditional sense. It is permitted to interrupt the load line during operation (voltage on). The maximum voltage drop compensation is adjustable. The voltage difference between G5-REGEN output and sensing point is monitored. If a set limit is exceeded, the G5-REGEN unit shuts off. This is particularly useful for applications with long cables often prone to unwanted voltage drops.

FAST DYNAMICS AND HIGH STABILITY

A current step between 0 to 90% I_{MAX} can be as quick as 50µs, enabling high speed drives to be tested. Advanced users have access to the controller settings enabling the response to be optimised for particular loads. This example shows a current step through quadrants. The upper trace shows the current transition is achieved in 50µs with a small overshoot before settling. The lower plot shows a more regulated response within 200µs. Voltage typically takes 100µs to recover within 0.5% of the set value. In multi-module systems the communication time between modules need to be considered.

RANGE1 SECOND CURRENT RANGE

Each module features a second current range that can be built into systems to give better accuracy and resolution for low current applications. This is particularly useful when testing high voltage equipment, such as electric vehicle battery packs, which typically produce low currents.

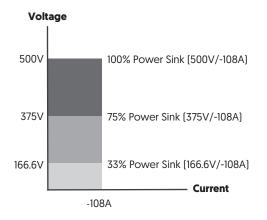


SWITCHABLE OUTPUT CAPACITANCE

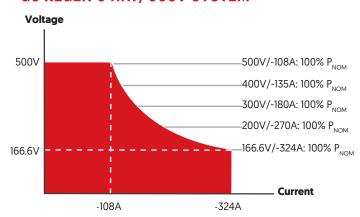
Switchable capacitance is provided within each G5-REGEN module as standard and is used to optimise the DC filter depending on the application in which the systems are used. A low capacitance level provides fast dynamics in constant current when discharging energy storage devices. Switching to the higher cap value provides for smoother operation during hard load steps when operating in constant voltage. Typical applications include energy storage simulation for electric drive developments.

↑ PROGRAMMABLE RIPPLE

By utilising the optional embedded function generator the user can set a current ripple at up to 10kHz. The magnitude can be up to 5% of the nominal system current. Depending on the impedance of the DUT the resulting voltage ripple can be calculated. The below example shows a 10kHz ripple generated using the function generator of the G5-REGEN. A peak to peak current of 8A has been superimposed on a current of 100A. Alternatively, a ripple can be implemented from an external waveform generator via the analogue interface using a proportional



AUTORANGING CAPABILITY


Every G5-REGEN features an autoranging DC sink range. This allows many more voltage/current combinations at nominal power than a traditional DC electronic load. An example of the difference is shown below using a G5-REGEN 54-500-324.

Using one autoranging electronic load instead of several traditional power systems saves both cost and bench space. Despite the units offering such a large output range, they are still incredibly power dense. 54kW of output power is provided from 10U of rackmounting height.

TRADITIONAL 54kW/500V DC LOAD

G5-REGEN 54kW/500V SYSTEM

OPERATING MODES

STANDARD FEATURES

	G5-REGEN 18-500-108	G5-REGEN 18-1000-54		G5-REGEN 27-500-162			G5-REGEN 27-1500-54	
Operating Modes	Constant Voltage [0 to 100% of V_{MAX}] Constant Current (0 to 100% of I_{MAX}] Constant Power [5% to 100% of P_{MAX}]							
Internal Resistance Range	0 to 5000Ω	0) to 18000Ω		0 to 3000	Ω	0 to	27000Ω
Programmable Load (CR Mode: $R_{\rm MAX}$ at $V_{\rm MAX}$, $R_{\rm MIN}$ at $V_{\rm MIN}$)	0.1 to 1500 Ω 0.5 to 7000 Ω 0.05 to 1000 Ω 0.5 to 10000 Ω					to 10000Ω		
Standard Interfaces	Analogue, Ethernet & USB							
	G5-REGEN G5-REGEN G5-RE 36-500-216 36-1000-108 54-500				G5-REGEN 54-1000-162	2	G5-REGEN 54-1500-108	
Operating Modes	Constant Voltage [0 to 100% of V _{MAX}] Constant Current [0 to 100% of I _{MAX}] Constant Power [5% to 100% of P _{MAX}]							
Internal Resistance Range	0 to 2500 Ω 0 to 10000 Ω 0 to		0 to 1500Ω 0 to		0 to 6000Ω		0 to 14000 Ω	
Programmable Load (CR Mode: $\rm R_{MAX}$ at $\rm V_{MAX}, R_{MIN}$ at $\rm V_{MIN})$	$0.05 \text{ to } 500\Omega$ $0.2 \text{ to } 3500\Omega$		0.05 to 5	Ω00	0.1 to 2000Ω		0.3 to 5500Ω	
Standard Interfaces	Analogue, Ethernet & USB							

HIGHLIGHTED FEATURE

INTERNAL RESISTANCE RANGE

Each module is built with a user programmable internal resistance range as standard. This makes the power systems ideal for simulating the energy storage devices such as battery packs and and super capacitors. The exact range varies by module.

AC LINESIDE

STANDARD FEATURES

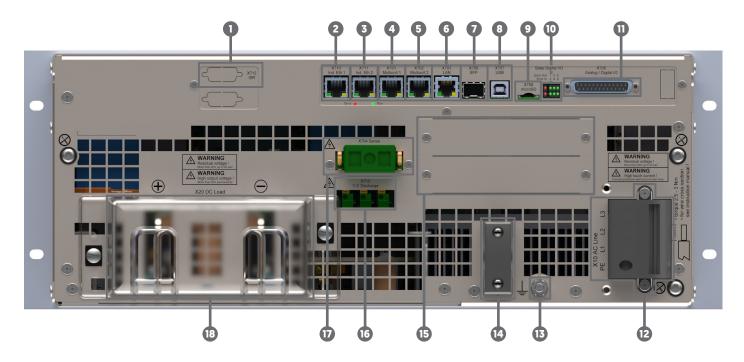
TECHNICAL DATA		
AC Line Voltage	3 × 380VAC to 480VAC ±10%	
Line Frequency	50Hz/60Hz	
Mains Connection Type	3L + PE (no neutral)	
Rated Current	Nominal at 3 × 380VAC: 29ARMS [18kW units] 44ARMS [27kW units] 58ARMS [36kW units] 88ARMS [54kW units] Nominal at 3 × 400VAC: 28ARMS [18kW units] 42ARMS [27kW units] 55ARMS [36kW units] 83ARMS [54kW units] Nominal at 3 × 415VAC: 27ARMS [18kW units] 40ARMS [27kW units] 53ARMS [36kW units] 80ARMS [54kW units] Nominal at 3 × 440VAC: 25ARMS [18kW units] 38ARMS [27kW units] 50ARMS [36kW units] 75ARMS [54kW units] Nominal at 3 × 460VAC: 24ARMS [18kW units] 36ARMS [27kW units] 48ARMS [36kW units] 72ARMS [54kW units] Nominal at 3 × 480VAC: 23ARMS [18kW units] 35ARMS [27kW units] 46ARMS [36kW units] 69ARMS [54kW units]	
Inrush Current	<33ARMS [18kW units] <66ARMS [27kW units] <66ARMS [36kW units] <99ARMS [54kW units]	
Power Factor	0.99 at P _{MAX}	
THDi	≤3% at 90%P _{MAX}	
Standby Power	31W [18kW units] 51W [27kW units] 52W [36kW units] 71W [54kW units]	
Protective Earth Conductor Current at 50Hz	According to IEC 60990: <7mA (18-36kW units) <10mA (54kW units)	
Input Filter Discharge to 60V	L-PE / L-L: <20s, with option /XCD: <1s	

HIGHLIGHTED FEATURE

The G5-REGEN has an inbuilt monitoring system that synchronises with grid conditions and recycles DC sink energy back to the grid during testing.

CODE	DESCRIPTION
/FILTER	Front panel air filter and frame arrangement providing G3 filtration efficient for ≥10um particles

HIGHLIGHTED OPTION

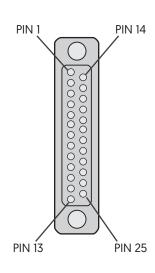

The G5-REGEN modules are designed to be operated within a clean laboratory environment. If there is the possibly that the environment will be less clean, then the optional front panel frame and air filter arrangement offer some additional protection. The standard filter material is rated in class G3. This class is effective at trapping a high proportion [90%] of particles \geq 10um according to EN 779.

Air filters have proven beneficial in environments where there is the risk of some metal working potentially leading to swarf contamination. Please note that the units with or without air filters must not be operated in environments where fine conductive dust is present.

INTERFACES AND CONTROL

STANDARD INTERFACES

	TECHNICAL DATA		
1	Optional	X712	Slot reserved for optional integrated safety relay [/ISR] interface.
2	Future Release	X710	Industrial Ethernet, e.g. EtherCAT. This interface can be easily retrofitted in the field once released.
3	Future Release	X711	Industrial Ethernet, e.g. EtherCAT. This interface can be easily retrofitted in the field once released.
4	Standard	X701	Multi-device communication interface SORTE protocol for parallel, series and matrix connection of modules.
5	Standard	X702	Multi-device communication interface SORTE protocol for parallel, series and matrix connection of modules.
6	Standard	X703	LAN interface (for external remote control).
7	Future Release	X706	Small form-factor pluggable (SFP) port which features a fibre optic card. Speeds up to 48kHz are planned via a direct connection to the G5-REGEN's controller. The SFP will also a allow a planned integration with Aurora protocol to support real-time controllers such as Typhoon and OPAL-RT. This additional functionality will be easily enabled in the field once released.
8	Standard	X707	USB interface (for external remote control).
9	Future Release	X708	Unassigned micro SD slot, with the potential of module datalogging planned in the future. Release date yet to be confirmed.
10	Standard	State Digital I/O	Status indication of digital I/O status on X705.
11	Standard	X705	Proportional 0-10VDC isolated analogue interface (detailed overleaf).
12	Standard	X10	AC line side connection (L1, L2, L3, PE). Illustration shows optional AC protective cover (/PACOB).
13	Standard	-	Earthing terminal on unit chassis for additional earth connection.
14	Optional	-	Strain relief for AC cable
15	Optional	-	Spare slots for optional interface cards (e.g. CANmp high speed 1kHz digital interface).
16	Standard	X713	Y-Cap discharge interface.
17	Standard	X704	Sense interface.
18	Standard	X20	DC terminals for connection to DUT with standard protective cover.



INTERFACES AND CONTROL

STANDARD ANALOGUE INTERFACE

An analogue interface is provided as standard which operates at 48kHz. The control port is configured as a Sub-D 25 female connector and is located on the rear panel. It allows output values to be set and read proportionally using a 0-10VDC analogue signal. Digital inputs and outputs enable various functions such as the interlock and output ON/OFF. A 10VDC reference is provided for analogue control. Digital functions are switched via a high/low signal. A 24VDC supply voltage is provided for these functions.

	INPUT/OUTPUT DATA
Number of Inputs/Outputs	4
Internal Resolution	16 bit
Input Accuracy	Bipolar range: ±0.1%, Unipolar range: ±0.2%
Output Accuracy	±0.2%
Input Filter	2nd order low pass filter, cut off frequency: 15kHz
Temperature Coefficient	0.02% FS/°C
Sampling/Update Rate	48kS/s
Output Settling Time	10µs (typical)
Input Voltage Range	-10V to +10V, -5V to +5V, 0V to 5V, 0V to 10V (selectable)
Absolute Max Input Voltage	±30VDC
Input Impedance	1MΩ (typical)
Output Voltage Range	-10V to +10V, -5V to +5V, 0V to 5V, 0V to 10V (selectable)
Max Output Current	20mA (short circuit proof)
Output Impedance	0.5Ω (typical)
Delay (Typical)	89µs (input to power out), 42µs (power out to analogue out)

PIN	SIGNAL	I/O	DESCRIPTION
1	AGND	Supp	Analogue ground for pins 2-4, 14-16
2	AIN1	Al	Voltage setpoint input 0-10VDC
3	AIN2	Al	Current setpoint input 0-10VDC
4	AOUT1	AO	Current feedback output 0-10VDC
5	AOUT2	AO	Power feedback output 0-10VDC
6	AOUT3	AO	Analogue reference voltage (+10VDC)
7	DGND	Supp	[Connected to pin 17] OVDC DigIn; common ground for pins 8–9, 18–20, 24, 25
8	APP_DIGIO_4	DI/O	Digital input/ouput ³ 0-2VDC /10-28VDC Default function: Clear error
9	APP_DIGIN_6	DI	Digital input ³ 0-2VDC /10-28VDC Default function: Voltage ON
10	REL1_14	RO	Relay output 1 normally open
11	REL1_13	RO	Relay output 1 common
12	REL2_14	RO	Relay output 2 normally open
13	REL2_13	RO	Relay output 2 common

PIN	SIGNAL	I/O	DESCRIPTION
14	AIN3	Al	Power limit analogue input 0-10VDC
15	AIN4	Al	Load resistance reference value input 0–10 VDC
16	AOUT4	AO	Voltage feedback output 0-10VDC
17	DGND	Supp	(connected to pin 7) Common ground to pins 8–9, 18–20, 24, 25
18	APP_DIGIO_1	DI/O	Digital input/ouput ³ 0-2VDC/10-28VDC
19	APP_DIGIO_2	DI/O	Digital input/ouput ³ 0-2VDC/10-28VDC
20	APP_DIGIO_3	DI/O	Digital input/ouput ³ 0-2VDC/10-28VDC No default function
21	REL3_14	RO	Relay output 3 normally open (warning)
22	REL3_12	RO	Relay output 3 normally closed (warning)
23	REL3_11	RO	Relay output 3 common (warning)
24	APP_DIGIO_5	DI/O	Digital input/ouput ³ 0-2VDC/10-28VDC No default function
25	+24 VDC	Supp	+24VDC I/O Aux power output 24VDC, max. 650mA

Pin 5 (0 VDC) is used as the reference earth for pin 25 (24 VDC) and is connected internally to the equipotential bonding via a 1 $k\Omega$ resistor to earth.

 $^{^2}$ Maximum switching current: 1 A; maximum switching voltage: 24 V. 3 On request digital pins can be programmed for a specific application.

DIGITAL I/O		
Number of Digital Inputs/Outputs	6 (each can be used as input or output)	
Output Voltage Supplied for Digital I/O	24VDC (-15%/+20%)	
Digital Input Characteristic	IEC61131-2 Type 1	
Digital Input Filter	3.2ms (10µs, 1ms and 10ms factory configurable)	
Digital Output Switching Time	T _{ON} : 64-120μs, T _{OFF} : 90-170μs	
Update Rate Digital Outputs	1kS/s	

DIGITAL I/O		
Max Voltage Digital Inputs	30VDC	
Sampling Rate Digital Inputs	1kS/s	
Digital Output Type	High-side switch	
Load Type	Ohmic, inductive, lamp load	
Max Total Output Current (All Channels)	0.65A	
Max Output Current Per Channel	0.625A (short circuit proof)	

RELAY OUTPUTS		
Number of Relay Outputs	2 × SPST (NO), 1 × SPDT	
Load Type	Ohmic, inductive, lamp load	
Max Switching Voltage	30VDC	
Max Switching Current	SPST: 3A, SPDT: 1A	
Update Rate	48kHz	

HIGHLIGHTED FEATURE

FRONT PANEL INDICATION

As standard the front panel has backlit indicators which illuminate to show which control mode the power system is operating in [CV, CC, CP, CR]. When the G5-REGEN has been successfully energised, the corresponding power light illuminates green to indicate this. An illumination is also provided to visually warn users of any status (yellow) or error (red) message.

OPTIONAL INTERFACES

CODE	DESCRIPTION
/HMI	Lockable touchscreen HMI providing front panel control and measurement
/CANMP	Multi-protocol CAN interface with up to 100 user configurable messages
/ETHERCAT	EtherCAT interface

HIGHLIGHTED OPTIONS

TOUCHSCREEN HMI (/HMI)

The optional HMI provides a simple and intuitive way of control and measurement via a touchscreen panel. Users can directly access features such as the system's protections, warnings/errors and optional function generator without the use of a computer. A user defined passcode can be set to lock the touch screen, which prevents unauthorised access. When selected, the HMI replaces the front panel indicator.

CAN CAN MULTI-PURPOSE INTERFACE (/CANMP)

CANmp is a high speed digital interface operating at 1kHz. The interface gives users the capability to customise the CAN protocol. Up to 100 messages are user configurable. Along with the CAN ID the data length code, byte order, start bit, data type and signal factor can be adjusted by the user. A DBC file is provided and messages can be easily configured within the standard windows software. Messages can be sent cyclically or upon receipt of a sync or syncID signal.

SOFTWARE/SOFT TOOLS

STANDARD G5.CONTROL GUI

All G5-REGEN units come with a simple and intuitive G5.Control operating GUI as standard. Live values of the power system are displayed graphically along with any warning and error messages. The software provides a variety of second level parameters, ideal for users who like to optimise their test processes. In standard user mode the operator can remotely program set values, enable voltage output as well as the ability to analyse different variables including set and actual values via the integrated scope.

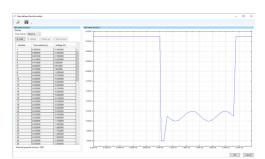
The scope function can simultaneously record up to 8 system variables. Recording can be started manually or by a defined trigger event from any variable of the system. All actual and set values (currents/voltages/power/internal resistance) can be recorded. Other recordable items include system temperatures, intermediate DC circuit, low voltage auxiliary power supplies, error related values and variables from the controller section.

A password protected section is available to the advanced user and service technician. In addition to the standard functions the authorised user is able to:

- + Program linear ramp functions at start up and set value steps during operation
- + Configure multi-unit operation
- Program the PID controller parameters
- + Program the unit's limit values
- + Calibrate and adjust values as necessary
- + Update the firmware

OPTIONAL SOFTWARE

CODE	DESCRIPTION
/TFE	Integrated function generating engine for time based programming, including sweep function
/AAP	Integrated function generating engine with application area (parametric) programming
/BATSIM	GUI simulating battery characteristics with adjustable parameters


HIGHLIGHTED OPTIONS

✓ FUNCTION GENERATOR (/TFE & /AAP)

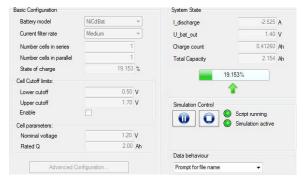
Complex DC waveforms can be implemented through an optional embedded function generator. The highly programmable nature of the function generator allows users to plot out exact waveforms. This is often advantageous when emulating a power device with

a very specific behaviour profile. For example, when quality testing fuel cells, a specific behaviour waveform for discharging the fuel cell can be programmed and replicated.

As well as custom shapes, standard square, sawtooth and sine waveforms can be plotted against time. Voltage/current and voltage/power relationships can also be programmed where necessary. Parametric programming is possible when selecting option /AAP, where instead of the time axis, an input variable $[V_{\text{IN}}, I_{\text{IN}} \text{ or } P_{\text{IN}}]$ can be selected.

APPLICATION SPECIFIC GUIS

HIGHLIGHTED OPTIONS


| BATTERY SIMULATION (/BATSIM)

BatSim is a battery emulation GUI for use with G5-REGEN power systems. The GUI allows the electronic loads to simulate real world behaviour of a battery pack.

Emulating a battery pack allows specific sections of a circuit to be isolated and researched. Nearly all relevant electrical characteristics are programmable including number of cells, energy capacity, cut off limits, chemistry type and nominal voltage. The modularity of the power systems provides a convenient method to emulate different size battery stacks. Hard to replicate conditions, such as a cranking curve from a cold start can be programmed and repeated when used in conjunction with the function generator.

The multi-channel data logger provides live reporting and output to file [CSV] with timestamps. Previously recorded data can be imported, reviewed and compared in the analyser mode. Other features include:

- + Adjustable internal resistance and discharge current
- Variation of exponential capacity and voltage levels
- + Emulation of common battery chemistries

- + Novel chemistries available on request
- + Series/parallel configuration of cells

ISOLATION

STANDARD FEATURES

TECHNICAL DATA		
DC+/DC- Output to PE	1500VDC	
Input Isolation Test Voltage (Line to Case/Logic)	2500VDC [1s]	
Output Isolation Test Voltage (Output to Case/Logic)	3330VDC [1s]	
AC Terminals to PE	900VDC	
AC to DC Terminals	1500VDC	
Resistance (DC+/DC- output to PE)	X713 jumper inserted: $22M\Omega$, X713 jumper removed: open	

MECHANICAL

TECHNICAL DATA		
AC Terminals	Screw terminals for 6 to 25 mm² [18kW models]/ 6 to 35 mm² [27-54kW models] wires, diameter ≤8.5mm	
DC Terminals	Output bars for M8 bolts	
Cooling	Direct forced air, front to back	
Operating Altitude	≤2000m above sea level (slight temperature derating possible above 1000m)	
Operation Temperature	-5°C to +50°C when continuous $I_{\rm IN}$ is <68ARMS, -5°C to +40°C when continuous $I_{\rm IN}$ is >68ARMS (-5°C to +40°C when optional air filter is installed at any input current)	
Storage Temperature	-25°C to +70°C	
Relative Humidity	0 to 95% (non condensing)	
Vibration	IEC 60068-2-6 (Test Fc)	
Acoustic Noise Level (1m From Front of Unit)	≤54dB [90% P _{MAX} /90% I _{MAX} at +25°C ambient]	

SAFETY AND PROTECTION

STANDARD FEATURES

TECHNICAL DATA		
Over Voltage Protection	Programmable	
Over Current Protection	Programmable	
Over Power Protection	Programmable	
Over Temperature Protection	Standard	
Protection Class	1 [EN 62477-1]	
Degree of Pollution	2 (EN 60664-1)	
Overvoltage Category	Mains input, EN 60664-1: 3, other interfaces: 2	
Safety of Machinery	EN ISO 13849-1:2015 N/A (without option /ISR), PL c (with 2 channel /ISR), PL e (with 2 channel /ISR and external safety relay)	
Safety Requirements for Power Electronic Converter Systems and Equipment	EN 62477-1:2017, Low Voltage Directive 2014/35/EU	
Emission Standards for Industrial Environments	EN 61000-6-4:2007+A1:2011	
Immunity Standards for Industrial Environments	EN 61000-6-2:2005	
Electrical Equipment for Measurement, Control and Laboratory Use	EN 61326-1:2013 (industrial level A)	
Restriction of Hazardous Substances	EN IEC 63000:2018	

OPTIONS

CODE	DESCRIPTION
/ISR	Integrated Safety Relay, e-stop interface for shutdown to EN ISO 13849-1:2015, Performance Level c
/PACOB	Protection against accidental contact of the AC terminal block
/RPP	Automatic voltage matching with reverse polarity protection
/XCD	AC safety discharge circuit discharging AC lines to <60V in <1s of AC power loss, required to meet EN 62477-1 for AC plug connections

HIGHLIGHTED OPTIONS

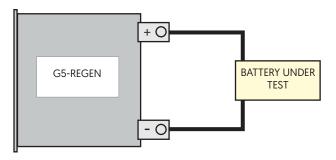
± automatic voltage matching with RPP (/RPP)

When researching energy storage devices, Reverse Polarity Protection (RPP) is recommended for devices without an automatic voltage matching circuit. With the G5-REGEN energised but output off, the RPP senses the voltage of the connected energy storage device. A contactor is closed after matching the voltage, to prevent large inrush currents and arcing on start up. The sense lines of the G5-REGEN are used to measure the battery voltage. A switched sense is also provided ensuring there is quiescent current draw at voltage off state.

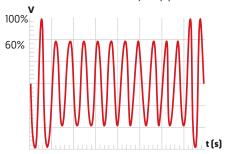
o INTEGRATED SAFETY RELAY (/ISR)

For additional safety, a mechanical interlock is available for the mains input of the G5-REGEN. The integrated safety relay provides shutdown safety according to EN 13849-1 category 2/3. The ISR is connected to the external safety switch loop. If the external loop is opened, the DC-output of the power system is powered down immediately.

PROTECTION AGAINST CONTACT (/PACOB)


A specially produced cover is optionally available which provides protection against accidental contact of AC terminal block (rated to IP20). A cover for the DC output bars in provided as standard.

COMMON G5-REGEN APPLICATIONS


∧ AC RIPPLE ON BATTERY LINK

A potential side effect of charger circuits that contain both AC and DC components is electrical noise. The ripple causes unwanted fluctuations in battery temperature, which results in deterioration of the battery's performance. By utilising the G5-REGEN's optional embedded function generator the user can set a current ripple at up to 10kHz to simulate this phenomenon.

▽√✓ **VOLTAGE DROPS & INTERRUPTS**

In electronic systems sudden voltage interruptions may cause unexpected behaviour. Supply line disturbances may have several causes, including an additional switch on of large capacitive loads parallel to the supply line or a short circuit caused by loads sharing the supply. The G5-REGEN can generate many complex DC waveforms to test devices under realistic conditions to identify any potential issues.

CAC RECTIFIER/CONVERTER TESTING

Virtually any DC operating waveform can be replicated using the G5-REGEN. The influence that variables, such as line voltage variation, have on performance can be isolated and tested. This allows optimum operating conditions to be characterised to improve efficiency and performance.

(H₂) FUEL CELL TESTING

The discharge behaviour of an FCEV's fuel cell is often irregular. By using the function generator, both conservative and aggressive driver profiles can be replicated. This allows the G5-REGEN to perform effective quality testing of fuel cells under all likely operating conditions.

Every effort is made to ensure that the information provided within this technical summary is accurate. However, ETPS Ltd must reserve the right to make changes to the published specifications without prior notice. Where certain operating parameters are critical for your application we advise that they be confirmed at the time of order. ETPS Ltd specialises in modifying its proven platforms to suit your needs. Please contact our office if your requirement is non-standard. Please note that your actual unit may differ from those shown.

ETPS engineer electronic power supply and testing systems. Our problem solving skills provide the spark of innovation to some of the world's leading technology brands.

