

EAC-ACS-40 GRID-TIED 4 QUADRANT POWER SUPPLIES

The EAC-ACS-4Q is a modular grid emulator with full 4 quadrant operation in just 11U of height. Each unit has the ability to sink and source both AC and DC power.

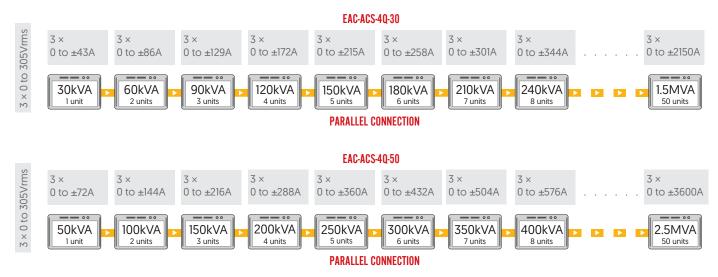
The module's active neutral string allows for any single phase or asymmetric condition to be accurately simulated. All three of the unit's phases are individually programmable for voltage, frequency, phase angles and superimposed harmonics. Current control is also optionally possible. GUIs are available to simulate a variety of grid and impedance conditions. An optional Fourier tool can create virtually any conceivable periodic waveform, with superimposed harmonics and inter-harmonic voltages up to 5000Hz.

- + Mains Regeneration of AC/DC Sink Energy
- + Simulated Impedance Software
- + Outputs to 2.5MVA Possible
- + Frequencies up to 5000Hz
- + Full 4 Quadrant Operation
- + Grid Simulation GUI

CONTENTS

Standard Models & Modularity	2
Form Factor & Enclosures	2
Options & Lineside	3
Isolation & Loadside	4
Loadside Configurations	5
Operational Diagrams	6
Software/Soft Tools	7
RLC Load Mode	8
Full Waveform Generator Mode	9
EMC Testing	10
Interfaces & Control	11
Safety, Protection & Mechanical	12
LAE & Senseboard	13
Common Applications	14

STANDARD MODELS


SELECTION TABLE

Part Number	Maximum Power	Voltage Range	Current Range	Dimensions (W × H × D)
EAC-ACS-4Q-30	30kVA	3 × 0 to 305Vrms (L - N)	3×0 to $\pm 43A$	19" × 11U × 635mm*
EAC-ACS-4Q-50	50kVA	3 × 0 to 305Vrms (L - N)	3 × 0 to ±72A	19" × 11U × 635mm*

*A full cabinet integration service is available on request

MODULARITY (MASTER/SLAVE)

Up to fifty EAC-ACS-4Q modules can be arranged in parallel. Each PSU is able to operate independently, so that systems can be expanded or broken up as needs dictate. The modular approach is useful for test houses and research labs which regularly test different sized power devices. Individual units can be used for the day to day testing of multiple small devices, then grouped together for larger projects. The diagram shows some possible parallel configurations using multiple modules.

FORM FACTOR AND ENCLOSURES

Each module is built into a 19" rackmounting case as standard. On request units can be treated to a laboratory rack or flight case integration. Having a programmable power system mounted into a flight case on castors is often advantageous, especially when several departments or test cells share the same equipment.

Multiple power systems can be fitted into the same flight case. Door hangers are fitted for convenience. Existing ETPS systems can also be retrospectively integrated into new flight cases where requested.

OPTIONS TABLE

OPTIONS

CODE	DESCRIPTION	
	FORM FACTOR AND ENCLOSURES	
/LR	Integration into a 19" lab rack	
/FC	Integration into a flightcase	
	SOFTWARE/SOFT TOOLS	
/GRIDSIM	Full waveform mode with adjustable parameters, ideal for simulating grid characteristics	
/RLCLOAD	Full 4 quadrant RLC load simulation mode	
/I-CONTROL	Full 4 quadrant amplifier mode with current control	
/POWERMODE	Constant power mode with user adjustable apparent power and cos(phi), or active power and reactive power	
	EMC TESTING	
/EMC-XXX	GUI to implement individual EMC standards, please specify which standard(s) you require to test to	
/VSE	Voltage slope enabling for fast voltage slopes ${\sc >}5\mu s$ and current peaks up to 1000A	
	INTERFACES AND CONTROL	
/CANMP	Integrated CANmp interface	
/IO	Digital I/O interface: 8 × Digital IN 24V, 8 × Digital OUT 24V, 4 × Relays, potential free SPDT	
	SAFETY AND PROTECTION	
/XCD	A safety discharge circuit which quickly removes a residual voltage hazard from the module within 1s, should the plug be accidentally removed while the EAC-ACS-4Q is energised	
	LIQUID TO AIR HEAT EXCHANGER	
/LAE-5-400	Additional 4U liquid to air heat exchange module with 380 - 480VAC input for cooling of the power stage	
/LAE-5-230	Additional 4U liquid to air heat exchange module with 100 - 240VAC input for cooling of the power stage	
SENSEBOARD		
/SENSEBOARD	Senseboard with programmable transformer ratio for RMS voltage drop compensation at 50/60Hz. The senseboard allows users to measure the voltage directly at the load, so the voltage can be controlled more accurately and the voltage drop over the load cables can be compensated. Maximum input voltages: L-L: 1000 VRMS, 1500 Vp L-N: 1000 VRMS, 1500 Vp N-PE: 500 VRMS, 750 Vp	

LINESIDE

STANDARD FEATURES

TECHNICAL DATA		
AC Line Voltage	3 × 360-528VAC _{ms}	
Line Frequency	$50Hz \pm 0.5Hz$ for UK (48 - 62Hz possible)	
Mains Connection Type	3L + PE (no neutral)	
Input Current	Nominal at 3 × 360VAC _{ma} : 54ARMS (30kVA modules) 90ARMS (50kVA modules) Nominal at 3 × 400VAC _{ma} : 48ARMS (30kVA modules) 81ARMS (50kVA modules) Nominal at 3 × 440VAC _{ma} : 45ARMS (30kVA modules) 74ARMS (50kVA modules) Nominal at 3 × 480VAC _{ma} : 41ARMS (30kVA modules) 68ARMS (50kVA modules)	
Inrush Current	Built-in precharge circuit (no excessive inrush current)	
Powerfactor	1 (at nominal power)	
THDi	\leq 1.5% at 90%P _{MAX} [30kVA modules] \leq 1% at 90%P _{MAX} [50kVA modules]	
Input Filter Discharge to 60V	<20s (standard) <1s (with option /XCD)	

HIGHLIGHTED FEATURE

When functioning as a load, the EAC-ACS-4Q has an inbuilt monitoring system that synchronises with grid conditions. This recycles the AC/DC sink energy from the loadside back to the three phase mains.

ISOLATION

STANDARD FEATURES

TECHNICAL DATA	
Power to PE [L1/L2/L3]	305VAC _{RMS} (working voltage)
Power to PE [L1/L2/L3]	432VDC (working voltage)
Power to Case/Logic	2120VDC/1s [test voltage]

LOADSIDE

STANDARD FEATURES

TECHNICAL DATA		
Standard Operating Modes	Constant Voltage Amplifier Mode and an ACSControl GUI for voltage/frequency adjustment (see page 8)	
Optional Operating Modes	Grid Simulation Mode RLC Load Simulation Mode Constant Current Amplifier Mode	
Connection Type	3L + N + PE (dependent on configuration, see page 6)	
Frequency Range (at Reduced Current)	0 - 5000 Hz (see operational diagram on page 7)	
Frequency (P _{MAX})	16 - 1000 Hz (see operational diagram on page 7)	
Voltage Slew Rate	≤4V / µs	
Voltage Slew Rate (10 - 90% step of full scale)	≤100µs	
Harmonic Distortion at 50Hz ¹	≤0.4% (linear), ≤1.6% (non-linear)	
Overloadability	${\leq}150\%$ up to 10s every 600s, ${\leq}200\%$ up to 1s every 60s (see operational diagrams)	
Modulation Bandwidth	5kHz	
DC Offset	≤10mV	
DC Ripple and Noise	16Hz - 200kHz: 230mVrms 9kHz - 20MHz: 700mV _{p-p}	
Efficiency	90% (at nominal power)	
Static Accuracy Voltage (RMS Controller)	0.05% F.S.	
Static Accuracy Voltage (General)	<1.5V	
Static Accuracy Frequency	2mHz	
Static Accuracy Phase Angle	lo	
Setpoint Resolution Voltage	0.1V	
Setpoint Resolution Frequency	1mHz	
Setpoint Resolution Phase	0.1°	
Measurement Precision Voltage	±0.7% F.S.	
Measurement Precision Current	±1.4% F.S.	
(TUDu) up to 200) (mpc (LN)		

¹ (THDu) up to 290Vrms (L-N)

HIGHLIGHTED FEATURES

INDIVIDUALLY PROGRAMMABLE PHASES

All three of the EAC-ACS-4Q's individual phases are independently adjustable. This provides up to three power systems from one unit. Using the optional GridSim GUI, it is possible to program each phase for: voltage, frequency, phase angle, as well as superimposed harmonic and interharmonic voltages up to 5kHz. Different voltage waveforms per phase are also possible in amplifier mode.

HARD WARE HARDWARE IN LOOP COMPATIBILITY

When operating in voltage amplifier mode, the EAC-ACS-4Q operates as a full 4-quadrant three phase amplifier. The drive signals are fed into the power system via analogue inputs from external sources. This is ideal for hardware in the loop (HIL) applications driven by a real time computer. A current amplifier mode is optionally available.

LOADSIDE CONFIGURATIONS

Each of the EAC-ACS-4Q's three phases are individually programmable for voltage, frequency, phase angles and superimposed harmonics. Below are configurations example using a single 30kVA or 50kVA module. Larger systems are possible from 60kVA to 1MVA.

AC CONFIGURATIONS

Connection Type

EAC-ACS-4Q-30 Ranges

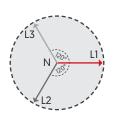
EAC-ACS-4Q-50 Ranges

	1. 3Φ OUTPUT (3L + N)
Connection Type	3L + N + PE
EAC-ACS-4Q-30 Ranges	Each Phase Individually Programmable: + 30kVA / 3× 305Vrms (L-N) / 3× 43A
EAC-ACS-4Q-50 Ranges	Each Phase Individually Programmable: + 50kVA / 3× 305Vrms (L-N) / 3× 72A

2.10 OUTPUT (1L + N)*

+ 20kVA / 305Vrms (L-N) / 86A

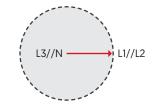
+ 20kVA / 305Vrms (L-N) / 144A *A firmware update needs to be provided from ETPS to implement this configuration.


L1||L2 + L3||N + PE

0.5-		X	X	_	
0.5-	Х	X		χ	
1.0	90°	180°	270°	360°	

1.0-

0.5


-0.5

180°

270

~PE

180°

L1//L2

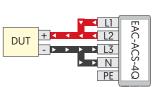
L3//N

3. 103W / SPLIT PHASE OUTPUT* Connection Type L1||L2 + L3||N + PE EAC-ACS-4Q-30 Ranges + 30kVA / 610Vrms (L-L) / 86A EAC-ACS-4Q-50 Ranges + 50kVA / 610Vrms (L-L) / 144A

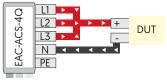
*A firmware update needs to be provided from ETPS to implement this configuration.

DC CONFIGURATIONS

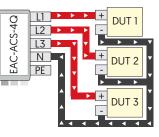
4. 1× OUTPUT (SYMMETRIC TO PE)	
Connection Type	L1 L2 + L3 N
EAC-ACS-4Q-30 Ranges	+ ±30kW / ±830Vdc / ±40A
EAC-ACS-4Q-50 Ranges	+ ±33kW / ±830Vdc / ±40A


5. 1× OUTPUT (RELATED TO PE)	
Connection Type	L1 L2 L3 + N
EAC-ACS-4Q-30 Ranges	+ ±25kW / ±415Vdc / ±60A
EAC-ACS-4Q-50 Ranges	+ ±25kW / ±415Vdc / ±60A

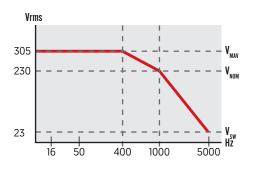
6. 2× INDEPENDENT OUTPUTS	
Connection Type	Output 1: L1 + L2, Output 2: L3 + N
EAC-ACS-4Q-30 Ranges	+ Output 1: ±16kW / ±830Vdc / ±20A* + Output 2: ±8kW / ±415Vdc / ±20A*
EAC-ACS-4Q-50 Ranges	+ Output 1: ±16kW / ±830Vdc / ±20A* + Output 2: ±8kW / ±415Vdc / ±20A*


*Total current to neutral limited to <20A

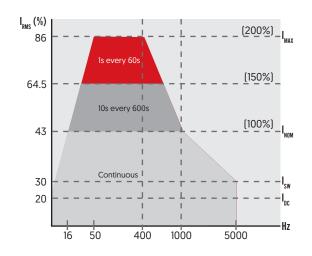
7. 3× INDEPENDENT OUTPUTS (RELATED TO PE)		
Connection Type	L1 + N, L2 + N, L3 + N	
EAC-ACS-4Q-30 Ranges	+ Each independent output: ±8kW / ±415Vdc / ±20A*	
EAC-ACS-4Q-50 Ranges	+ Each independent output: ±8kW / ±415Vdc / ±20A*	


*Total current to neutral limited to ≤20A

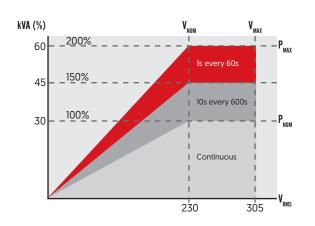
360

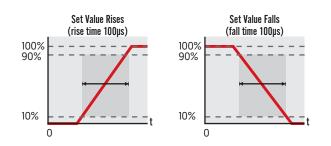


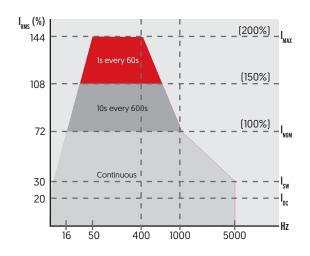
DUT 1	+	▼	▼	▼▶	L1 L2	EAC-
DUT 2	+	▼	▼	▼	L3 N	-ACS-4
					PE	Q

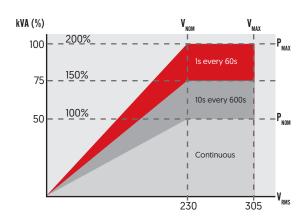


OPERATIONAL DIAGRAMS


OUTPUT VOLTAGE VERSUS FREQUENCY


OVERLOADABILITY VERSUS FREQUENCY (30KVA MODULES)


OVERLOADABILITY VERSUS VOLTAGE (30KVA MODULES)


SLEW RATE AT A RESISTIVE LOAD

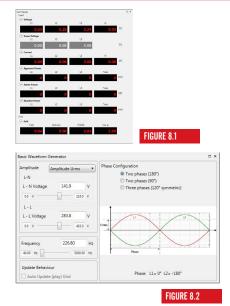
OVERLOADABILITY VERSUS FREQUENCY (50KVA MODULES)

OVERLOADABILITY VERSUS VOLTAGE (50KVA MODULES)

SOFTWARE/SOFT TOOLS

STANDARD ACSCONTROL GUI

All EAC-ACS-4Q units come with a simple and intuitive ACSControl operating GUI as standard. The module is connected to a PC via the standard Ethernet or USB interface. Live values of the power supply are displayed graphically along with any warning and error messages. Input values to the EAC-ACS-4Q from the local grid are also displayed, including: input current, reactive power, active power and Cos ϕ (Figure 8.1). The software allows protection levels to be set on both the lineside and loadside of the system.


As standard, ACSControl comes with a basic waveform generator mode (Figure 8.2). This allows users to implement sinewaves and edit parameters such as frequency and voltage (either L-N or L-L), as well as choosing the number of output phases (two or three). For more complex programming requirements, the optional GridSim GUI provides users with much greater functionality than standard ACSControl.

HIGHLIGHTED FEATURE

W VOLTAGE AMPLIFIER MODE

ACSControl also features a voltage amplifier mode as standard. The module receives external signals via an analogue input for each phase. To achieve a desired output on the loadside of the module, the signals can be either amplified or reduced by a user defined scaling factor. Different waveforms are possible per phase.

Any device which creates -10 to +10V can be used as an external signal generator. This functionality is particularly useful for hardware in the loop applications. Users also have the ability to discharge the EAC-ACS-4Q module through the amplifier mode.

	□ ×
Stop	Discharge
l mode, please go to	the User Config tab.
e: Voltage Control	
ues, go to the User Co	onfig tab.
101.8	
326.6	
	Store Settings
	, and the second s
	FIGURE 8.3
	de I mode, please go to e: Voltage Control ues, go to the User Co 101.8

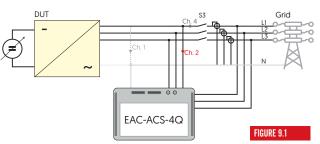
OPTIONAL SOFTWARE

CODE	DESCRIPTION
/GRIDSIM	Full waveform mode with adjustable parameters, ideal for simulating grid characteristics
/RLCLOAD	Full 4 quadrant RLC load simulation mode
/I-CONTROL	Full 4 quadrant amplifier mode with current control
/POWERMODE	Constant power mode with user adjustable apparent power and cos(phi), or active power and reactive power

HIGHLIGHTED OPTION

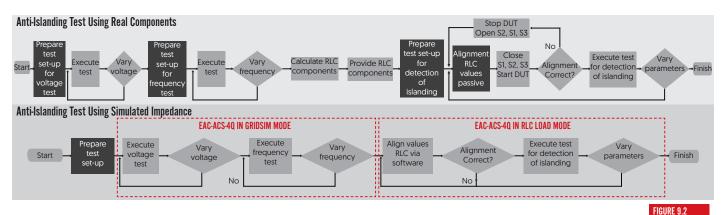
() CURRENT CONTROL MODE (/I-CONTROL)

For applications where you need to actively control the output current of the EAC-ACS-4Q, an additional current controlled amplifier mode is available. For example, a 10V input is equal to 124A for the 50kVA modules. So if you want an output of 62A, then a factor of 0.5 (62/124) is entered into the scaling field.


HIGHLIGHTED OPTION

RLC LOAD MODE (/RLCLOAD)

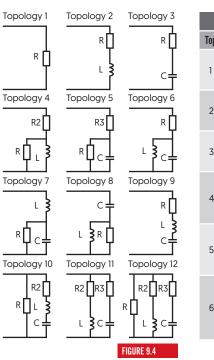
The optional RLC load mode {Resistance (R), Inductance (L), Capacitance (C)} enables the user to set apparent (VA) and reactive power (VAR). It also allows the power factor (cos phi) to be adjusted. The simulated impedance is particularly useful for users who design, research and develop renewable systems which feed energy to the public grid.


🕱 ANTI-ISLANDING TESTING

The software allows the EAC-ACS-4Q to test against anti-islanding regulations for grid-tied power systems. These regulations prevent safety risks and define the operating limits at which power equipment goes out of tolerance. If the equipment exceeds these tolerance levels, it needs to detect the condition and disconnect from the grid.

As the EAC-ACS-4Q simulates impedance for these regulatory tests, users do not have to use real components. This drastically reduces set up time and minimises the possibility of human error within the setup of the test circuit. It also eliminates the need to buy lots of different high power components for multiple tests, which can often prove very expensive. The difference between using real components and the EAC-ACS-4Q is illustrated in Figure 9.2.

Figure 9.1 illustrates a test set-up using the EAC-ACS-4Q's simulated impedance. For the detection of islanding, the switch S3 is closed and the module is operated in RLC simulation mode. The S3 switch is reopened again to test the DUT's behaviour while in an islanding condition.



-RC- CONFIGURING AN RLC CIRCUIT

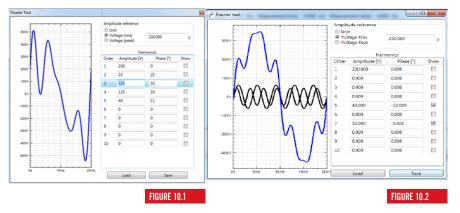
Users can select between 12 different types of topology within the software (Figure 9.4). Each loadside phase can have its own RLC topology, as shown in Figure 9.3.

Individual parameters of each topology circuit can be set to customise the test to your specific requirements. The settable values are listed in Figure 9.5.

POSSIBLE VALUE RANGES OF RLC CIRCUIT					
Topology	Range of Values	Topology	Range of Values		
1	R: 0.001Ω to 10000Ω	7	R: 0.001Ω to 100Ω L: 1µH to 100mH C: 1µF to 100mF		
2	R: 0.01Ω to 100Ω L: 1µH to 1000mH	8	R: 0.1Ω to 100Ω L: 1µH to 50mH C: 1µF to 50mF		
3	R: 0.001Ω to 100Ω C: 1µF to 1000mF	9	R: 0.001Ω to 100Ω L: 1µH to 100mH C: 1µF to 100mF		
4	R: 0.1Ω to 100Ω R2: 0.1Ω to 100Ω L: 1µH to 1000mH	10	R: 1Ω to 50Ω R2: 0.001Ω to 5Ω L: 10μH to 10mH C: 10μF to 5mF		
5	R: 0.001Ω to 100Ω R3: 0.001Ω to 10Ω C: 1µF to 100mF	11	R2: 0.1Ω to 1Ω R3: 0.001Ω to 1Ω L: 1µH to 50mH C: 1µF to 10mF		
6	R: 0.001Ω to 3.2Ω L: 1μH to 10mH C: 1μF to 10mF	12	R: 1Ω to 100Ω R2: 0.1Ω to 1Ω R3: 0.2Ω to 1Ω L: 10µH to 50mH C: 10µF to 10mF		
			FIGURE 9.5		

WWW.ETPS.CO.UK

EAC-ACS-4Q DATASHEET - PAGE 9 OF 15


HIGHLIGHTED OPTION

FULL WAVEFORM GENERATOR MODE (/GRIDSIM)

Where more advanced testing is required, the optional GridSim GUI provides users with a selection of advanced features. The software allows for manual operation and programming, as well as automated test runs to be configured with ease. A set of predefined periodic waveforms are available including sine, clipped sine, square, triangle, sawtooth. User defined waveforms are also possible.

X FOURIER TOOL

A Fourier tool is provided that can create virtually any conceivable periodic waveform. Superimposed harmonic and inter-harmonic voltages are programmable up to 5000Hz. The Fourier mathematics required to generate such waveforms is already built into the tool, meaning there is no need to manually figure out the complex equations that are required for advanced waveforms. This saves time when configuring a test setup, as well as reducing the possibility of any human errors.

Individual waveforms, as well as the final synthesised waveform, are represented graphically within the software. As shown above, the synthesised waveform is shown in blue and the individual waveforms are shown in black.

 A L1 Sim(025.7/ 50%) 071 	Phase selection 100 10 10 10	(INI)			
# B Modulation	Basic waveform		Modulation		
Amplitude Step curve(Rünits)	∕ sine		All a	Amplitude modulation Step curve	Constitute
C Frequency None	Edit details			stalk course	- Carlos
1 D Added				Emplancy modulation	
	(Anglitude Ums •) 230.0	v	Athe	None	Death-ate
V Amplitude Step curve(DUnits)	Frequency 50.000	10			
V Prequency None	1 period 20.000	Post *		Phase angle modulation	
1 B Added	Phase Symm. [2] 0.000		Attre	None	Centivate
 A L3-Sine(325.3V 50Hz -2407) B Modulation 					
Amplitude Step curve(Stimite)	Added waveforms				
	Added waveform 0		Amplitude Ú	• 325.3	v
A Phase None	None		Enquency	90.000	14
1 ···· L& None	Lat article		Tperiod	20.000	inset +
			Phase Sym	n: 🛛 nied	*
			00000		
	time 100me 120me 140me 140me	180m 200m	220ms	240m 280m 280	

∧∧ GRID SIMULATION

A bidirectional circuit can be formed between the DUT(s) and the EAC-ACS-4Q to emulate a grid network. Typical grid conditions can be created in the GUI to investigate how changes to the mains voltage affect a power system's behaviour.

Common conditions such as voltage dips, short interruptions and voltage spikes can be recreated. An example of a voltage interruption is shown in Figure 10.3. Each of the system's three output phases can be used independently to simulate the balancing of a grid to meet changing demands.

Both user defined and automated tests can be implemented, with the ability to record and recall data. Relevant grid feed-in regulations can be programmed into the software. This is particularly useful for testing renewable energy generation devices.

🐺 ADDITIONAL FUNCTIONALITY

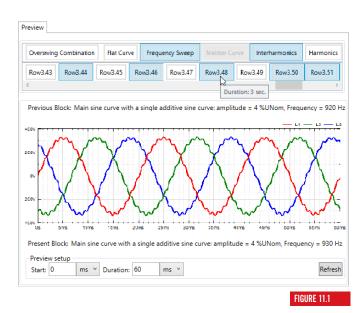
Non-periodic waveforms such as voltage ramps, DC straight lines (either positive or negative), step curves and exponential curves can also be programmed within GridSim. This allows virtually any conceivable waveform to be generated that is within the unit's dynamic capabilities.

Specific phase imbalance conditions can be user programmed, which is particularly useful when testing three phase induction AC motors under various conditions.

Name of the system Name of		Normal shares and the second second	Count		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Cancel		
Str. DOD (0.0) DOD (0.0) I Date for a for largency (j. 37) Allow 6 Protect for brance (j. 37) Allow 6 Table for a for strenger (j. 37) Allow 10 Date for a for strenger (j. 37) Allow 10 Table for a for a strenger (j. 37) 10 10 Table for a for a strenger (j. 37) 10 10 Table for a strenger (j. 37) 10 10	Test 1				
Bit Bit Bit Bit Bit State	Phase	Level (% UNom)		Ku2 [%]	
State State State State State Sta	Ua				
Source of an imageneous (s) 30 International imageneous (s) 3000 International imageneous (s) 300 Internatimageneous (s) 30					
State for before it is approved (j) 380 Mar I	Uc	90.00	240.00	6	
Res. Leaf [S land] Res [T] Lo2 [N] (b) (b) (b) (b) (b) (b) (b) (c)					
Image: 1000	fest 2				
Image: 1000	Phase	Level IS UNcert	Phase [7]	Ku2 (%)	
(b) (b) (b) (b) (c) (c) <td></td> <td></td> <td></td> <td></td> <td></td>					
Total for all total baseline [k] 31 Anal for the baseline [k] 325 Fail 1 Press 1 Press 1 State 1					
Basis Sec. Sec. <t< td=""><td>Uk</td><td>80.00</td><td>239.00</td><td>13</td><td></td></t<>	Uk	80.00	239.00	13	
Ub 66:00 139:00 25 UK 71:00 235:00 25 Dwell time of each sequence [6] 0.1					
Up 11000 000 15 Ub 66.00 119800 25 Up 17.00 255.00 25 Denit fire of each sequence [0] 01	Test 3				
Ib 66.00 119.00 25 UK 71.00 235.00 25 Dwell time of each sequence [k] 0.1					
U: 71.00 235.00 25					
Dwell time of each sequence (s) 01	Ua				
	Ua Ub Uc	66.00 71.00	139.00		
	Us Ub Uc Dwell time of each	66.00 71.00 sequence [s] 0.1	139.00		
	Us Ub Uc Dwell time of each	66.00 71.00 sequence [s] 0.1	139.00		
	Us Ub Uc Dwell time of each	66.00 71.00 sequence [s] 0.1	139.00		

EMC TESTING

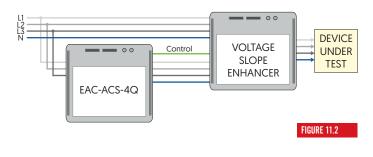
OPTIONS


CODE	DESCRIPTION
/EMC-XXX	GUI to implement individual EMC standards, please specify which standard(s) you require to test to
/VSE	Voltage slope enabling for fast voltage slopes $<5\mu$ s and current peaks up to 1000A

SOFTWARE

Specific EMC test standards listed below are individually available to execute from the EAC-ACS-4Q's operating software. The GUI features a separate test interface for each standard and provides waveform visualisation, tracing, and verification capabilities. Automatic generation of test reports is also provided.

Each test consists of multiple sequences, which can be executed as a whole or as individually selected blocks. EMC classes 1 to 4 predefined by a specific standard are user selectable. There is also a class X available, where relevant variables are programmable. Example variables include dip deepness, harmonic content, and frequency shift.


Trigger signals are generated by the EAC-ACS-4Q for external measurements with a power analyser. To guarantee the

conformity of the standard test, the voltage accuracy of the EAC-ACS-4Q can be verified by calibrated external measurement tools before executing the test procedure. If the accuracy is not within the limits according to the particular standard, calibration and adjustments can be implemented via the ACSControl GUI.

EMC STANDARD	DESCRIPTION
EN 61000-4-11:2004*	Voltage dips, short interruptions, and voltage variations immunity tests up to 16A per phase
EN 61000-4-13:2002 + A1:2009	Harmonics and interharmonics immunity tests
EN 61000-4-14:1999 + A1:2001 + A2:2009	Voltage fluctuation immunity test
EN 61000-4-27:2000 + A1:2009*	Unbalance, immunity test up to 16A per phase
EN 61000-4-28 + A1:2004 + A2:2009	Variation of power frequency, immunity test
EN 61000-4-34:2005 + A1:2009*	Voltage dips, short interruptions, and voltage variations immunity tests more than 16A per phase

* Full compliance testing to this standard requires additional VSE hardware.

W VOLTAGE SLOPE ENHANCER (/VSE)

The standards highlighted with asterisks above require the execution of voltage drops, short interruptions, and voltage variations. Switching at any time is mandatory, not only at zero crossing of the voltage.

To achieve this an additional VSE (voltage slope enhancer) is available. The hardware allows for fast voltage slopes $<5\mu$ s and current peaks up to 1000A, and for two different voltage sources to be switched between (e.g. AC grid and EAC-ACS-4Q), as shown in Figure 11.2.

INTERFACES & CONTROL

STANDARD INTERFACES

1. SAFETY AND MULTI-MODULE OPERATION				
X112-2	ISR interface (must be terminated with the dumr	my plug X112, if not used]		
X601/X602	Preset distribution interfaces, only used for multi terminated with 100 ohms]	i-module systems (NOTE: In single device use one of these interfaces must be		
	2. CONTROL PORT O	DUTPUT FUNCTIONS		
X603	EtherCAT input interface (only used for multi-mo	odule systems]		
X604	EtherCAT output interface (only used for multi-m	nodule systems)		
X605	LAN interface for remote control through ACSCC	ontrol/API; 200Vrms isolation to electronics and earth		
X607	USB type B interface for remote control through	ACSControl/API; 250Vrms isolation to electronics and earth		
X608	Micro SD card slot (for service only)			
X609	4 Inputs for general usage, ±9.5V reference volta	2 pin flush-type, mating connector: Phoenix Contact (1430048) age; 4 Outputs for general usage, ±9.5V reference voltage 50µs; 80kHz Sampling rate; 250Vrms isolation to electronics and earth; pins min. load impedance		
X620	Trigger input port BNC (start) TTL; 250Vrms isola	tion to electronics and earth; 10k Ω input impedance		
X621	Trigger output port BNC (programmable) TTL; 29 proof)	50Vrms isolation to electronics and earth; 560 Ω output impedance (short circuit		
3. OUTPUT INTE	RFACE FOR COOLING CIRCUIT			
Thread	G^{\prime}_{2} with connection fitting			
4. AC L	INE INPUT TERMINAL			
X10	L1, L2, L3			
5. EARTHING STUD FOI	R ADDITIONAL EARTH CONNECTION			
Diameter and Thread	Diameter: M10, thread length: 28mm			
6. AC LO/	AD OUTPUT TERMINAL	+		
X20	L1, L2, L3, N, PE			
7. INPUT INTERFACE	FOR LIQUID COOLING CIRCUIT*			
Thread	$G^{1\!\!/_2^{\prime\prime}}$ with connection fitting			
Material	Aluminium			
Liquid Temperature	15 - 50°C			
Flow Rate	2.5I/min (min), 5I/min (recommended)			
Max. Inlet Temperature	25°C at 2.5I/min, 40°C at 5I/min, 50°C at 8I/min	, <u> </u>		
Maximum Pressure	4 bar			
Pressure Drop	70mbar at 5I/min	*Use cooling liquid with a 30% share of Antifrogen $N^{\ensuremath{\emptyset}}$ within a closed circuit		
	8. CONTROL PORT INPUT FUNCTIONS	FOR AMPLIFIER MODE (X610 - X612)		
X606	RS-232 interface (for service only); 125Vrms isola	ition to electronics and earth		
X610	Signal input for phase L1 on the load side; voltag	ge setting -432V to +432V (-10V to +10V)		
X611	Signal input for phase L2 on the load side; voltag	ge setting -432V to +432V (-10V to +10V)		
X612	Signal input for phase L3 on the load side; voltag	ge setting -432V to +432V (-10V to +10V)		
Maximum Input Voltage	±30V			
Sampling Rate	80kHz			
Time Delay Input to Output	Typically <70µs			
Isolation to Electronics and Earth	125 Vrms			
Input Impedance	20.5kΩ			

OPTIONAL INTERFACES

DESCRIPTION
Integrated CANmp interface
Digital I/O interface: 8 × Digital IN 24V, 8 × Digital OUT 24V, 4 × Relays, potential free SPDT

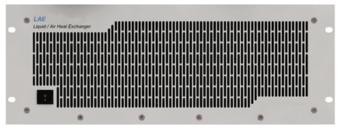
STANDARD FEATURES

TECHNICAL DATA				
Overvoltage and Overcurrent Protection	Programmable			
Ingress Protection (According to EN 60529)	Basic construction to IP20; mounted in cabinet up to IP54			
Safety Interfaces	The energy transfer between the line side and the load side will be disconnected via integrated safety relays. The interface provides a connection to an external safety circuit.			
Internal Diagnostics	Line input conditions, internal current conditions, temperature conditions, system configuration, system communication, power semiconductor temperatures			
Protection Class	1			
Degree of Pollution	2			
Overvoltage Category				
Low Voltage Directive 2014/35/EU	EN 62477-1:2012 + A11:2014 + A1:2017 + A12:2021			
Electrical Equipment (Safety) Regulations 2016	BS EN 62477-1:2012+ A11:2014 + A1:2017 + A12:2021			
Directive 2014/30/EU EMC Immunity (Industrial)	EN 61000-6-2:2005			
Directive 2014/30/EU EMC Emission (Industrial)	EN 61000-6-4:2007+A1:2011			
Electromagnetic Compatibility Regulations 2016 EMC Immunity (Industrial)	BS EN 61000-6-2:2005			
Electromagnetic Compatibility Regulations 2016 EMC Emission (Industrial)	BS EN 61000-6-4:2007+A1:2011			
RoHS Directive 2011/65/EU	EN IEC 63000:2018			
The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012	BS EN IEC 63000:2018			

HIGHLIGHTED FEATURE

o o INTEGRATED SAFETY RELAY (/ISR)

For additional safety, contactors are provided on both the lineside and the loadside of the EAC-ACS-4Q. These integrated safety relays provide a safe shutdown according to EN 13849-1 category 2/3. The ISR is connected to the external safety switch loop. If the external loop is opened, the EAC-ACS-4Q is powered down immediately.


MECHANICAL

STANDARD FEATURES

TECHNICAL DATA				
AC Lineside Terminals	Screw terminals 6 to 35 mm² wires, diameter ≤8.5mm (3L + PE)			
AC Loadside Terminals	Screw terminals 6 to 35 mm² wires, diameter ≤8.5mm (3LN + PE)			
Weight	Approx. 150kg			
Noise	≤74dB at 1m			
Cooling	Liquid cooled (optional liquid to air heat exchanger)			
Operating Temperature (30kVA Modules)	5 to 40°C			
Operating Temperature (50kVA Modules)	5 to 40°C (when a liquid to air heat exchanger is installed, then the module's maximum power is limited to 45kVA between 32 to 35°C and 35kVA between 35 to 40°C)			
Storage Temperature	-18 to 70°C			
Relative Air Humidity	0 to 95% (non-condensing)			
Installation Altitude	0 - 2000m above sea level (slight temperature derating possible above 1000m)			
Vibration	IEC 60068-2-6 (Test Fc)			

OPTIONAL LIQUID TO AIR HEAT EXCHANGER

Each unit has a liquid cooling circuit, which allows the 4 quadrant modules to be built into their compact 19" × 11U case. Should it not be feasible to connect the unit to an external cooling loop, then a separate module is optionally available to provide a liquid to air heat exchanger.

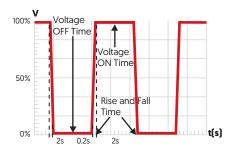
MODEL OPTIONS

CODE	DESCRIPTION
/LAE-5-400	Additional 4U liquid to air heat exchange module with 380 - 480VAC input for cooling of the power stage
/LAE-5-230	Additional 4U liquid to air heat exchange module with 100 - 240VAC input for cooling of the power stage

/LAE SPECIFICATIONS

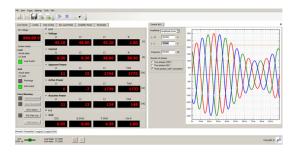
	/LAE-5-400	/LAE-5-230	
Line Voltage	380 - 480VAC	100 - 240VAC	
Voltage Tolerance	± 10%	± 10%	
Line Frequency	48 - 62Hz	48 - 62Hz	
Input Power	200VA	200VA	
Mains Connection Type	2x L + PE	L + N + PE	
Power Factor	≥0.98	≥0.98	
Current	0.5A		
Leakage Current L to PE	<10mA		
Heat Exchanger Material	Aluminium		
Inlet / Outlet on Rear Size	G½″		
Storage Temperature ¹	-18 to 70°C		
Cooling Air Temperature in Operation	0 to 40°C		
Atmospheric Humidity	0 to 90%, non-condensing		
Cooling Power ²	5kW at 20°C		
Flow Rate (Max)	10 I/min		
Pressure Difference $\Delta P = P_{OUT} - P_{IN}$	250mbar		
Weight	25kg		
Dimensions ($W \times H \times D$)	19" × 4U × 649mm		
¹ With full filled ethylene glycol based coolant in a mix	ture of 30% ² Cooling power at ambient t	emperature	

SENSEBOARD

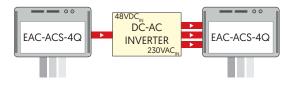

ELECTRONIC TEST & POWER SYSTEMS

OPTION		
CODE	DESCRIPTION	
/SENSEBOARD	Senseboard with programmable transformer ratio for RMS voltage drop compensation at 50/60Hz. The senseboard allows users to measure the voltage directly at the load, so the voltage can be controlled more accurately and the voltage drop over the load cables can be compensated. Maximum input voltages: L-L: 1000 VRMS, 1500 Vp L-N: 1000 VRMS, 1500 Vp N-PE: 500 VRMS, 750 Vp	

COMMON EAC-ACS-4Q APPLICATIONS


SMART GRID RESEARCH

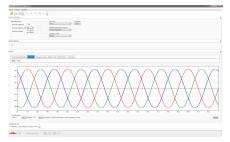
A bidirectional circuit can be formed between devices under test and the EAC-ACS-4Q. By using each of the unit's phases as an AC source, the balancing of a smart grid to meet demand can be accurately simulated. The grid feed-in regulations can be programmed into the optional GridSim GUI, to ensure any device which generates energy to the mains is compliant to local standards.


Dev to the second secon

The EAC-ACS-4Q can be used to simulate three phase motor imbalances. Using the optional GridSim GUI, each of the unit's output phases are individually programmable for phase angle, voltage, current and frequency. The GridSim GUI provides users with a convenient way to program specific phase imbalance conditions.

[№]∕_{AC} INVERTER/CONVERTER TESTING

The AC or DC input/output of virtually any power conversion device can be replicated. The influence that variables such as line voltage variation have on performance can be isolated and tested. This allows optimum operating conditions to be characterised to improve efficiency and performance.


⊥⊥ AC RIPPLE ON BATTERY LINK

A potential side effect of charger circuits that contain both AC and DC components is electrical noise. The AC ripple causes unwanted fluctuations in battery temperature, which results in deterioration of the battery's performance. Two separate phases of the EAC-ACS-4Q can be used to emulate a high frequency AC ripple over a DC battery link. By charging the battery with one phase, another phase can be used to superimpose an AC ripple of up to 5kHz on the battery link.

((())) EMC TESTING

Automated EMC tests can be programmed into the optional GridSim GUI. The power system is capable of testing against standards for voltage fluctuations, power frequency variations and short interruptions among others. Each EAC-ACS-4Q has an incredibly high peak current capability. When combined with additional hardware, 50kVA modules are able to produce up to 1000A and simulate a voltage drop [phase loss] within 5µs.

✗ TESTING MORE ELECTRIC AIRCRAFT

The EAC-ACS-4Q is able to provide frequencies up to 1kHz, with superimposed harmonics up to 5kHz. This allows virtually any conceivable power condition to be recreated, such as the wide frequency range required for replicating an aircraft's variable frequency generator.

Every effort is made to ensure that the information provided within this technical summary is accurate. However, ETPS Ltd must reserve the right to make changes to the published specifications without prior notice. Where certain operating parameters are critical for your application we advise that they be confirmed at the time of order. ETPS Ltd specialises in modifying its proven platforms to suit your needs. Please contact our office if your requirement is non-standard. Please note that your actual unit may differ from those shown.

ETPS engineer electronic power supply and testing systems. Our problem solving skills provide the spark of innovation to some of the world's leading technology brands.

Tel: +44 (0) 1246 452909 Sales: 0800 612 95 75 sales@etps.co.uk www.etps.co.uk ETPS Ltd Unit 14, The Bridge Beresford Way, Chesterfield S41 9FG

POSITIVE PROBLEM SOLVING